Currencement: HW2 posted on website, due 8/10 2359

THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH2058 Honours Mathematical Analysis I Tutorial 3

Date: 27 September, 2024

Field Axioms of real number:

A1.
$$a + b \in \mathbb{R}$$
 if $a, b \in \mathbb{R}$;

A2.
$$a + b = b + a$$
 if $a, b \in \mathbb{R}$;

A3.
$$a + (b + c) = (a + b) + c \in \mathbb{R} \text{ if } a, b, c \in \mathbb{R};$$

A4. There exists
$$0 \in \mathbb{R}$$
 such that $a + 0 = a$ for all $a \in \mathbb{R}$;

A5. For any
$$a \in \mathbb{R}$$
, there is $b \in \mathbb{R}$ such that $a + b = 0$;

M1.
$$a \cdot b \in \mathbb{R}$$
 if $a, b \in \mathbb{R}$;

M2.
$$a \cdot b = b \cdot a$$
 if $a, b \in \mathbb{R}$;

M3.
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c \in \mathbb{R}$$
 if $a, b, c \in \mathbb{R}$;

M4. There exists
$$1 \in \mathbb{R} \setminus \{0\}$$
 such that $a \cdot 1 = a$ for all $a \in \mathbb{R}$;

M5. For any
$$a \in \mathbb{R} \setminus \{0\}$$
, there is $b \in \mathbb{R}$ such that $a \cdot b = 1$;

D.
$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 if $a, b, c \in \mathbb{R}$.

- 1. (a) State the completeness of \mathbb{R} ;
 - (b) Using the axioms (and point out which axiom is used at each step), show that $(ab)^{-1} = a^{-1} \cdot b^{-1}$ for $a, b \in \mathbb{R} \setminus \{0\}$.

Pf: 1) a) Sps SSR Ts a nonempty subset that is bounded above, then eup Sexists in R.

b) Uniqueness of multiplicative viverse: sps a CR (203 and b, c CR 1.t. a.b=1, a.c=1.

$$b = b \cdot l$$
 (M4)
 $= b \cdot (a \cdot c)$ (assumption)
 $= (b \cdot a) \cdot c$ (M3)
 $= (a \cdot b) \cdot c$ (M2)
 $= l \cdot c$ (assumption)
 $= c \cdot l$ (M2)

= C ,

By uniqueness, it makes sense to talk about the multiplicative muers of a EIKIES, which we will devote by at! Then, replacing a with who in MS abone, and by uniquenes, we kun duet (ab) 15 the multiplicative muerse of ab. So we him $(ab)^{-1} = (ab)^{-1} (M4)$ $= \alpha^{-1} \cdot b^{-1} \cdot (M2)$ = (ab) [(aa] (M5) = a-1.6-1 (M4). = (ab) (aa-1) .1 (M4) = (ab) (aa-1) (bb) (M5) = (ab) (aca-16). b-1 (M3) $= (ab)^{-1}(ab)a^{-1}(b^{-1}(M2))$ = (ab) (a-b) a-1.b-1 (M3) = 1.a-1.b-1 (M5)

- 2. (a) Let S be a non-empty subset of \mathbb{R} bounded from above, show that $\sup(aS) = a \cdot \sup S$ if a > 0, and where $aS = \{a \cdot s : s \in S\}$.
 - (b) Find sup S if $S = \{n^{-1} m^{-1} : m, n \in \mathbb{N}\}$. Justify your answer.

Pf: a) 5 noneupty, bounded above, 80 by completeness araom,

sups exacts. (likewise need to check their us is

noneupty wel bounded above to show

sup (as) exacts).

Let u= sup S. UTS au = sup (as)

let u= sup S. UTS au = sup (as), since u=supS, bseS, seu Va>0

as sau., so au ison u.b.q. as.

Sps visem u.b. of u.S. So a.SEV forall seS. Naso

S = \frac{v}{a} for all se S.

50 & 15 au u.b. of S. and we have

us 2 => aus v; as required.

b) Well chan expS=1: 1 is an u.b. of S: Since nEN, 0<n^1<1 and liheurise m^1>0. So we obtain,

 $-m^{-1} < n^{-1} - m^{-1} < 1 - m^{-1} < 1$

Now sps v is on u.b. of 5 moth v<1. Then 1-v>0 By A.P. com fiel mell s.t. incl-v.

Which gives $\frac{1}{1-\frac{1}{m}} > V$, a contradiction. Hence $1=\sup_{t=0}^{\infty} \int_{-\infty}^{\infty} |t|^{2} dt$

MATH2058 Tutorial 3

- 3. We want to define x^r for x > 1 and $r \in \mathbb{Q}$ following the below procedure.
 - (a) For any w>0, show that for any $m\in\mathbb{N}$, there exists an unique $z\in\mathbb{R}$ such that z>0 and $z^m=w$. You might use the fact that

$$(x+y)^n = \sum_{k=0}^n C_k^n x^{n-k} y^k, \quad \forall x, y \in \mathbb{R}.$$

(b) Suppose $r = m/n = p/q \in \mathbb{Q}$ for some $m, n, p, q \in \mathbb{N}$. Show that

$$(x^m)^{1/n} = (x^p)^{1/q}$$

where the quotient power is defined using (a). Thus, it makes sense to define $x^r := (x^m)^{1/n}$ where m/n is one of the representative of r.

(c) Show that $x^{r_1+r_2} = x^{r_1} \cdot x^{r_2}$ for $r_1, r_2 \in \mathbb{Q}$ and x > 1;

EZM+1 E CMZMk

(d) (Bonus) Show that $x^r = \sup A_r$ where $A_r = \{x^p : p \leq r, p \in \mathbb{Q}\}$. (Thus, we might define x^y for $y \in \mathbb{R}$, by $\sup A_y$)

H: a) let uso, meN be given. Set S= { seR s.t. sm<w}. 1st: WTS rup 5 exists: Clearly 0m = 0 e S. So Smoreupty, bonded above: If w<1, then I bonded above by i. So by completeness, 2:= Sup 5 exists in R. 2^{vol}: 270: Since W>0, 200, and (2) = um cum so = €S, lunce 2> 5>0. 5 rd 3 m= W; 1st suppose 2th cw. Then next to find n EN 9.t. 2th ES, which 15 a contradiction b/c. 2th>2 and contradicts the fact text 2 15 cm h.b. of S. $\left(z+\frac{1}{n}\right)^{m}=\sum_{k=0}^{\infty}C_{k}^{m}z_{k}^{m-k}$ (NSI, SO NE EN .)

Since
$$w-2^{M}>0$$
, $z>0 \Rightarrow z^{M-k}>0$,
$$=\sum_{k=1}^{M} \frac{c^{M}z^{M-k}}{c^{M}z^{M-k}} > 0 \quad \text{so we have}$$

$$=\sum_{k=1}^{M} \frac{c^{M}z^{M-k}}{c^{M}z^{M-k}} > 0 \quad \text{where}$$

So Z+ & E S.

M CM 2M-L

Sps 2m > WI fiel nell s.t. 2-his on u.b. of S which contradicts the fact that z new Lu.b. $\left(2-\frac{1}{n}\right)^{m}=2^{M}+\sum_{k=1}^{M}\binom{m}{k}\frac{2^{m-k}}{(-n)^{k}}$ >2M - & Ch zm-k k=2l-1 nk l=1, ... L2 > 2m - 1 5 Ch 2m-k So similarly by A.P. con fuel new s.t.

\[\frac{2m-w}{n} = \frac{2m-w}{m-2m-h} \]

\[\frac{2m-w}{m-2m-m} \]

\[\frac{2m-w}{m-2 mel destitution back in yields

So
$$2^{m} = W$$
.
Uniqueness: Sps $y \in R$ s, q $y > 0$, $y^{m} = W$. Then
$$0 = W - W = 2^{m} - y^{m}$$

$$= (2 - y)(2^{m-1} + 2^{m-2}y + 2^{m-3}y^{2} + ... + 2^{2}y^{m-3} + 2y^{m-2} + y^{m-4})$$
by $2, y > 0$, thin factor > 0 .

by part (a). $(x^m)^{\frac{1}{n}} = (x^p)^{\frac{1}{2}}$ By part (a). $(x^m)^{\frac{1}{n}}$ is the unique positive number $\geq_i s.t.$ $\geq_i = x^m$

Similarly $(x^p)^{\frac{1}{2}}$ is the unique positive number 2z i.t. $2z^2 = x^p$.

 $\frac{m}{n} = \frac{1}{2} = mq = np$

50 me here 2,49 = xmq = xnp = 2,49.

So by unqueuse of part (a), me here that Z1 = Zz.

c) WTS $\chi^{r_1+r_2} = \chi^{r_1} \cdot \chi^{r_2}$ for $r_1, r_2 \in \mathbb{R}$. (et $r_1 = \frac{M}{N}$, $r_2 = \frac{1}{4}$, for $m, n, p, q \in \mathbb{N}$). The map, pinelly and $(\chi^{r_1+r_2})^{n_2} = (\chi^{r_1})^{n_2} = \chi^{r_1} + \frac{1}{4} \gamma^{r_2} + \frac{1}{4}$

d)
$$r \in \mathbb{Q}$$
. $A = \{x^p : p \in r, p \in \mathbb{Q}\}$,

1st show x^r is u.b. of A . Let $r = \frac{m}{n}$, $p = \frac{a}{b}$, where $m_n a_n b \in \mathbb{N}$,

So we have $r n = m$, $p b = a$ and also $p \in r$ gives $\frac{a}{b} \in \frac{m}{n}$.

 $\begin{cases} x^p \mid bn = x n a \leq x^m b = (x^n)^n b \end{cases}$.

We can also than if $2^m \ge y^m$, then $2 \ge y$ for $2 \cdot y > 0$:

 $0 \le 2^m - y^m$
 $= (2 \cdot y)(2^{m-1} + 2^{m-2}y + \cdots + 2y^{m-2} + y^{m-1})$

z) z-y20 =) zzy, >0.

This quies us $X^P \in X^{\Gamma}$ l.u.b. Since $X^{\Gamma} \in A$. Sps for the sale of contraction therefore we have an ub, $V \in R$ s.t. $V < X^{\Gamma}$. But this contractions the fact that $V \cap A$ and $A \cap A$.

Hence Xr = rup A.